Epileptic Seizure Classification of EEG Image Using SVM
نویسنده
چکیده
In recent years humans suffer from various neurological disorders such as headache, dementia, traumatic brain injuries, strokes and epilepsy. Nearly 50 million people of the world population in all ages suffer from epilepsy. To diagnose epilepsy an automatic seizure detection system is an important tool. In this paper we present a new approach for classification of Electroencephalogram (EEG) signals into two categories namely epilepsy and non epilepsy. The features of the EEG images are extracted using Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT). The extracted features are used in the model generation. The pattern classification model of SVM observes the distribution of the EEG features of classes. The experiment on various EEG image illustrate that the results of SVM are significant and effective.
منابع مشابه
Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier
Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...
متن کاملPerformance Analysis of Epileptic Seizure Detection Using DWT & ICA with Neural Networks
The electroencephalogram (EEG) signal plays an important role in the detection of epilepsy. The EEG recordings of the ambulatory recording systems generate very lengthy data and the detection of the epileptic activity requires a timeconsuming analysis of the entire length of the EEG data by an expert. The aim of this work is compare the automatic detection of EEG patterns using Discrete wavelet...
متن کاملClassification of EEG Signals Using Sampling Techniques and Least Square Support Vector Machines
This paper presents sampling techniques (ST) concept for feature extraction from electroencephalogram (EEG) signals. It describes the application of least square support vector machine (LS-SVM) that executes the classification of EEG signals from two classes, namely normal persons with eye open and epileptic patients during epileptic seizure activity. Decision-making has been carried out in two...
متن کاملEEG Signal Analysis for Epileptic Seizure Detection Using Soft Computing Techniques
Seizure activity takes place due to an irregular excessive electrical action in the human brain. The electrical activity in the form of brain waves (signals) can measured by using the device called Electroencephalogram (EEG). In this paper, we have reviewed our work so far made regarding EEG signals. Comparative between Artificial Neural Network (ANN) and Support Vector Machine (SVM) this revie...
متن کاملElectroencephalogram Signal Classification for Automated Epileptic Seizure Detection Using Genetic Algorithm
BACKGROUND Epilepsy causes when the repeated seizure occurs in the brain. Electroencephalogram (EEG) test provides valuable information about the brain functions and can be useful to detect brain disorder, especially for epilepsy. In this study, application for an automated seizure detection model has been introduced successfully. MATERIALS AND METHODS The EEG signals are decomposed into sub-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014